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A microphone is an electroacoustic transducer. When located in a sound field, its output is an electrical
signal that reproduces the sound pressure variations that it senses. There are two fundamental types of
microphones,passive andactive. The electrical power output of a passive transducer is derived solely from
the acoustic power it absorbs, while an active transducer controls an external source of power.

The first application of a microphone was as a telephone transmitter. Bell first tried a passive transducer,
simply his receiver used in reverse, but its output was far too feeble for practical use. Then he used a liquid
transmitter, with a fine point immersed in a conducting liquid. This was an active transducer, and provided
the necessary power by controlling the current from an external battery. The carbon microphone, perfected
by Edison, soon became the preferred transmitter, and was used until very recently. It is an active
transducer, supplying about a thousand times more electrical power than the acoustical power it absorbs.

The word "transmittee was originally used for the telephone transducer, and is still so used in telephone
technology. The many active transducers proposed as telephone transmitters that used microscopic contacts
were dubbed "microphones" by Hughes. In radio, the complete transmitting apparatus is called the
"transmitter," so "microphone" was adopted for the transducer in radio to avoid confusion. This usage has
become so general that "microphone" is now the word for a general electroacoustic transducer of any type,
except with telephones.

A passive transducer is strictly limited by the conservation of energy. It would seem that by using stronger
magnets in the Bell receiver used as a transmitter, more energy could be extracted, but magnets are not a
source of energy, so all attempts to do this were utterly defeated. There is always some reaction that keeps
the energy accounts straight. Most passive transducers have the property that they are reversible: if a
transducer converts acoustic energy into electrical energy, the same transducer will convert electrical
energy into acoustical energy. This is illustrated by intercom systems that use a moving-coil loudspeaker as
a microphone as well. Active transducers are not reversible.

We must deal with three interconnected elements to understand microphones. First is the acoustic input,
sound waves in air. These interact with a mechanical system, usually a diaphragm, to excite motion in solid
bodies. Finally, the mechanical system interacts electrically to create an electrical generator. Therefore, we
shall take up these elements one by one in what follows. There is a large amount of interesting physics and
engineering in microphone design.

Vibrations and Oscillators



The diaphragm of a microphone is a mechanical system that vibrates under the influence of the sound
waves that reach it. The operation of a microphone is very greatly affected by the motion of the diaphragm,
sometimes influenced by air volumes and passages behind it. Therefore, we begin by a thorough
examination of the vibrations of mechanical systems.

Small vibrations in gases, liquids and solids are described approximately by linear equations, so that the
principle of superposition holds, usually to a very high degree. This means that we can build up any
vibration from a superposition of harmonic, or sinusoidal, vibrations. This is a very powerful method in
electric circuits, with which the reader is probably quite familiar. The vibrations of even complex systems
can be analyzed in terms of normal modes, each representing a harmonic vibration of a definite frequency.
We shall generally specify frequency as the ordinary frequency f in Hz, or as the angular frequency co = 27cf

in s-1, calling them both frequency, but identifying which is meant by the units.

Consider an oscillator consisting of a mass m grams and a spring of stiffness s dyne/cm. Let
x be the departure of the position of the mass from its equilibrium position in a certain fixed
direction. If the mass m hangs from the spring, there will be a certain average displacement
xo = mg/s. We will neglect this displacement in what follows, since it does not affect any of
our results, and is only mentioned to avoid confusion in mental pictures. If a positive x
compresses the spring, then the force on m will be -sx and the equation of motion will be m

(d2x/dt2) = -sx. If primes stand for the time derivatives, then the equation of motion is x" + (s/m)x = 0,
which is linear. It is also very familiar and easily solved in exponentials, so that x = A sin coot + B cos coot,

where A and B are arbitrary real constants and o.)2 = s/m. We can write this instead as x = Aet, where A is
now a complex constant, or aphasor, and we agree to take the real part as our solution. Either way we have
the necessary two arbitrary constants for a general solution that will match any boundary conditions (x,x at
t = 0, say).
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Forced Oscillators

Such an oscillator can be driven, orforced, by an external force f(t) applied to
the mass, so that the force acting on it in the direction of x is f - sx. Forced
oscillators are shown in the figure. The external force can be applied either to
the mass, or to the point of support. The equation of motion is now mx" + sx =

f. Let us assume that x and f depend on time through et, where co is an

arbitrary frequency. Then, we find -m02 + sx = f, where x and f are now

phasors, so that x = f/(-mo)2 + s). The velocity is v = jcox, so v = f/j(mo) - ski)),
or f = v[j(mo) - sko)]. The quantity in square brackets is called the mechanical

impedance Z' , by analogy to electric circuits, where f corresponds to the voltage V, and v to the current I,
and V = IZ. In this analogy, m corresponds to the inductance L and s to the inverse capacitance 1/C. Then,
coo = 1/4C). The oscillator can be likened to a series circuit driven by a voltage V across it, with the
velocity corresponding to the resulting current. This can be a valuable analogy for studying vibrations, or
by simulating a vibrating system by an electrical circuit. An oscillator driven at the mass acts like a series
resonant circuit, with the velocity of the mass a maximum at resonance.

This is not the only possible analogy. If we
assume that I corresponds to the force f, and V to
the velocity v, then we have I = VY, where Y is
the admittance. If m corresponds to C and s to
1/L, then we have I = V[j(o)C - 1/coL)]. Now the
equivalent circuit is the parallel combination of L
and C across which there is the voltage V, giving
rise to a current I. This is just as valid as the
previous analogy, but we shall stick mainly to
the previous analogy.

Another way to force the oscillator is not to apply a force to the mass, but to move the point of support by
an amount y, as shown in the figure above. Now the force on the mass will be f = s(y - x), and the equation

of motion will be mx" + sx = sy, or x"/s + x/m = y/m. Now, substituting the time dependence d't and
solving for the phasor x, we have x = sy/(s - mo.)2). If we use this to find f = s(y - x), we find that f = -m02x.
We can equally well consider f as a force applied to the point of support to drive the oscillator. Using the



expression for f in terms of x to replace x in the solution of the equation, we have -(1/mco - (o/s)f = coy, or
joy = [j(co/s - 1/mo))] = joy = v, where v is now the velocity of the point of support, not the mass m.
Applying the electrical analogy, with I = joy and V = f, we have I = VY, where Y = j((oC - 1/(oL), the
admittance of the parallel combination of C and L. That is, when driven at the point of support by a force f,
an oscillator looks like a parallel resonant circuit, so that at resonance, the velocity of the point of support is
a minimum (zero in the ideal case). If we use the second analogy instead, we find a series circuit in this
case, as we might expect.

are in phase

So far we have neglected frictional dissipation in the oscillator. If we add a force
proportional to velocity, -rx', the equation of motion becomes mx" + rx + sx = f. The
frictional force is represented in the diagram by a dashpot below the mass. When

exponential time dependence is introduced, we find (-mco2 + jcor + s)x = f, or v = jcox = f/[r
+ j(com - sko)]. A real component r has been added to the mechanical impedance.
Mechanical impedance Z' relates force f and velocity v by f = Z'v, so the dimensions of Z'
are dyne-s/cm or g/s. In the MKS system, this is kg/s, of course. r has the same dimensions,

g/s while stiffness s has dimensions g/s2. At resonance, we see that v = f/r, so that v and f
and proportional. A little frictional resistance removes the infinities at resonance, so the

quantities vary smoothly through this region.

The Q, or quality factor, of the oscillator is the dimensionless combination Q = (oom/r = .V(sm)/r, containing
all three parameters. When Q is larger than 1, the resonance curve of v vs. co is more or less sharply peaked.
When Q is smaller than 1, the resonance is not pronounced. When Q is large, it is very closely co0/A(0,
where Ao) is the frequency difference between the half-amplitude points of the resonance curve. It is also
the ratio of the energy stored in the oscillator to the energy dissipation per cycle.

We found that the natural vibration of an oscillator with r = 0 was a linear combination of et and eiwt,

where co was the natural frequency Ai(s/m). When r is greater than zero, if we try a solution of the form e°,

we find that cc must satisfy the equation ma2 + ra + s = O. Solution by the quadratic formula gives a =

-(r/2m)[1 jAi(4Q2 - 1)] after a little algebra to show how Q enters in this expression. If Q > 1/2, we find
two exponentially-damped solutions of a frequency slightly different from coo. If Q < 1/2, we find a linear
combination of two exponentially decreasing functions, with no oscillation at all. If Q = 1/2, we have a

special case called critical damping in which r = 2\,1(sm). Not only do we have one solution e't, but te't is

also a solution. The general solution is then (A + Bt)e't. Although this exact form occurs only on the
boundary, it is a good approximation in the neighborhood of Q = 1/2. The general solution for the forced
oscillator is the sum of a solution of the unforced oscillator at the natural frequency, and the special forced
response we have previously found at the forcing frequency. The first term is called the transient solution
and decays with time until finally only the forced oscillation remains. All of these familiar phenomena
occur with microphones and loudspeakers.

We generally want the sensitivity of a
microphone to be independent of frequency,
or "flat." If the microphone is sensitive to
pressure, then a force f drives the diaphragm,
and we want the displacement x = v/jco to be
independent of frequency, or v to be
proportional to frequency. Since v = f/[r + j
(me) - s/o))] this will happen, at least
approximately, if r and mco are much less
than s/co. In that case, v = -jcof/s, which is
what we desire. An oscillator that behaves in
this way is called steess controlled. The
response of a stiffness-controlled oscillator is
shown at the right. The response as 20 log
[x/(f/s)] is plotted against u = f/fo, where fo is
the resonant frequency of the oscillator. The
expression for the magnitude of the response
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Response of a Stiffness-Controlled Oscillator



is x = (f/s)[(1 u2)2 (u/Q)2]-1/2,x which is easily derived from the equations above. This oscillator has Q =
3.16. It is not hard to see that any oscillator is stiffness controlled at frequencies much less than its natural
frequency. The response is essentially level for frequencies less than a tenth of the resonant frequency. This
is the reason that the resonant frequency of the diaphragm of a microphone is made greater than the
maximum frequency at which the microphone will be used. The diaphragm of a telephone transmitter to be
used from 300 Hz to 3000 Hz may have a resonant frequency of 10,000 Hz for this reason. The resonant
frequency is raised by making the diaphragm stiff and light. It should be noted that increased stiffness s
means less response.

A microphone whose output depends on the velocity of the response, such as a moving-coil or dynamic
microphone, or a ribbon microphone, is made flat by operating near the resonant frequency with a low Q.
In this case, v = f/r is independent of frequency. Here, too, we have a trade-off, since increased r means
decreased output. An oscillator operated in this range is called resistance controlled.

An oscillator driven well above its resonant frequency is called mass-controlled, since in this case v =
f/jwm. In this region, the displacement drops off very rapidly with frequency, so it is not useful for a
pressure microphone. The acceleration a = ow is the constant quantity in this region. This may sometimes
be desired, but not in a microphone.

Before leaving vibrations and oscillators, let's look at modelling an oscillator using the electrical analogy.
Most texts mention that this can be done, but give no examples of how. Assume we have an oscillator with

m = 100 g and s = 106 dyne/cm (about 1 kg per cm). We will neglect the damping in this case, but it can
easily be added. The natural frequency of this oscillator is 100 s-1, relatively low for electrical simulation,
but possible. First, we choose the values of L and C to be used in the circuit. Let us try L = 1 H. Since the
resonant frequency must be the same as for the mechanical oscillator, C = 100 µF. It is possible to scale the
frequency, but we will not get into the complications involved and stick with a direct analogy. Since
velocity will be the analogue of current, let us choose 1 mA to represent 10 cm/s. The force exerted on the

100 g by an acceleration of 10 cm/s2 will be 103 dynes. The voltage induced in L for a current change of 1

mA/s will be 10-3 V. Therefore, 1 mV corresponds to 103 dynes, or 1 V to 106 dynes.

To see that this works, suppose we apply a driving force with an amplitude of 106 dynes and a frequency of
50 s-1 to the oscillator. The displacement x will be 106/[-(2500)(100) + 1061 = 1.33 cm. [2500 is co2 = (50)2.]
The velocity amplitude will be jcox = j66.7 cm/s. Now we consider the electrical circuit. We connect 1 H

and 100 µF in series, and apply 1 V peak at 50 s-1 to them. Z = j(50 - 1/50 x 10-4) = -j150 Q. The current I
will be 1/-j150 = j6.67 mA. Since 1 mA corresponds to 10 cm/s, the analogous velocity of the mechanical
oscillator will be j66.7 cm/s, which we have already determined. We can use the circuit to predict the
behavior of the mechanical oscillator for any magnitude and frequency of applied force.

If we take L = 10 mH and C = 1 µF instead, the resonant frequency will be 10,000 s-1. If we apply 1 V at

5000 s-1, Z will still be -j150Q, and I will still be 6.67 mA, which gives the proper result, 66.7 cm/s. This
illustrates how the frequency may be scaled to put the simulation into a more convenient frequency range.

5000 s-1 is 796 Hz, much more convenient than 7.96 Hz.

Sound Waves

Sound waves are longitudinal scalar waves in air. The important quantities are the displacement x, the
velocity v, and the overpressure p. The air is treated as a continuum, and x is its displacement and v is its
velocity, often called theparticle velocity to distinguish it from the phase velocity of acoustic waves. The
direction of x and v is normal to the wavefront, in the direction of propagation. All of these quantities are
exceedingly small for sound of normal intensities, allowing the equations of motion to be linearized to high
accuracy. Sound waves obey the principle of superposition, and harmonic (sinusoidal) waves are the basis
of analysis. Sound waves are treated in detail in the article Sound WaN es.

The density of air at 0°C and 1 atm pressure (STP) is 1.2926 g/cm3. 1 atm is 1.01325 x 106 dyne/cm2. Dry
air obeys the ideal gas law with a molecular weight M = 28.97, and the ratio of the specific heats is 1.402.
The phase velocity of sound under these conditions is c = .Nieyp/p) = -\/(yRT/M) = 331.5 m/s. At 20°C, c =



343.4 m/s. Since the speed of sound is independent of frequency, propagation is nondispersive, and the
group and energy velocities are the same as the phase velocity.

p, s, v
Phase Relations in a Sound Wave

The relations between the quantities in a harmonic plane wave of

displacement x = Ael('t kz), where co is the angular frequency, k is
the wave vector 27r/k, and co/k = c. A is an arbitrary complex
amplitude, are easily expressed. The particle velocity v = jcox, and
the condensation s = Ap/p = jkx. The overpressure p =typos =
(ypo/c) v = rv. The quantity r connecting overpressure and velocity
is the acoustic impedance of air. For air at STP, r = 42.6

dyne-s/cm3 or g/cm-s. The power in a sound wave is expressed in

terms of the overpressure p by P = p2/2r. The phase relations between these quantities as a function of time
at a fixed point are shown in the diagram. öplüx is shown for k positive; for k negative, it is multiplied by
-1. The other quantities are independent of the sign of k (direction of wave).

An overpressure of 10 µbar (a µbar is just a dyne/cm2) or 1 Pa (N/m2) makes a rather strong sound wave.

However, p/po is still only about 10-5. The corresponding condensation, or fractional change in density is s
= p/jypo, and even smaller. The particle velocity is p/r = 10/42.6 = 0.235 cm/s, much less than c = 33150
cm/s. The particle velocity is in phase with the overpressure, but the condensation is in quadrature. Finally,
the displacement x = v/jco is in phase with the condensation, but in quadrature with the pressure. At 1000

Hz, co = 6283 s-1, so the magnitude of x will be 3.74 x 10-5 cm, only about 0.4 jim! The energy flow in the

wave is 1.17 erg/s/cm2, or 0.116 j1W/cm2. Sound is a very small disturbance of air, and it is a marvel that it
can be detected by ears and microphones at all.

The threshold of hearing at 3000 Hz is an overpressure of 2 x 10-4 dyne/cm2. Hearing is less sensitive at
lower and higher frequencies. Since we are dealing with many orders of magnitude, sound intensity is

expressed logarithmically, in decibels. The sound pressure level (SPL) is dB re 2 x 10-4 dyne/cm2, or SPL =

20 log (p/2 x 10-4). Normal conversation is carried out at SPL 50 to 60 dB. An SPL of 60 dB corresponds to

p = 0.2 dyne/cm2. An SPL of 120 dB causes discomfort; it corresponds to p = 200 dyne/cm2. Even at this

intensity, the acoustic energy flow is only 0.469 mW/cm2. The apparent loudness of a sound increases
logarithmically with energy intensity, giving the aural sense a large dynamic range. This is characteristic of
all the senses, and is known as Fechner's Law.

The wavelength at 1000 Hz is 33.1 cm, or a little over a foot, something worth remembering. Most
microphones, especially the ones popular today, are rather small, and do not disturb the sound field greatly.
When the wavelength approaches the size of the microphone, diffraction effects occur that change the
distribution of the pressure at the surface of the microphone. For a spherical microphone, diffraction about
doubles the overpressure at the point facing the incoming wave. This effect may be relied upon to lift the
response of the microphone at high frequencies, when it would otherwise begin to droop. Diffraction
effects are important only at high frequencies. In the telephone bandwidth of 300-3000 Hz, they can be
neglected.

The acoustic impedance mismatch at the interface between air and water or a solid is very great. The result
is that sound is almost perfectly reflected or diffused from a liquid or solid surface. The same occurs for
sound generated within water when it reaches the surface. The air and the water are almost perfectly
separated acoustically. Sound waves exhibit all the diffraction and interference phenomena that light waves
do, and usually more obviously.

We shall usually assume that the pressure at the microphone diaphragm is the pressure in the undisturbed
sound wave. This is a good approximation for low frequencies and small microphones, where the
microphone disturbs the sound wave only minimally. When the dimensions of the microphone approach
the acoustic wavelength, the pressure is affected by diffraction and reflection. If the wave is reflected at the
diaphragm, a pressure node is created and the pressure is twice that in the undisturbed wave.

Microphone Types



Bel Ps invention of the electromagnetic telephone in 1875 set off a vigorous search for a good transmitter,
which was lacking to make the telephone a practical system. Passive transmitters could not provide
sufficient power for general use in view of the lack of electronic amplification. Therefore, active
transmitters of greater output that varied their resistance in time with the acoustic signal seemed the only
answer. Many such devices rapidly came to light, using a wide variety of interesting techniques. Some used
liquids, such as the Bell liquid transmitter itself, and others that employed jets of electrolytes. Others used
uncertain mechanical contacts, or flames whose conductance varied with height, which in turn varied with
acoustical pressure. Glow discharges in air were sensitive to acoustic waves as well. These devices are all
interesting and curious, but none were satisfactory, and it is difficult now to experiment with them, though
their principles may make good demonstrations.

tmile Berliner invented a variable-resistance solid transmitter using the contact between a metal diaphragm
and a metal ball 1877. Edison followed with a similar solid-contact transmitter in 1878. In that year,
Hughes suggested that the contact between small grains might be superior to that of larger bodies, and
named transmitters using this principle microphones to distinguish them. Hunnings devised a microphone
using carbon granules from coke, which was the starting point for Edison's search for a better transmitter.
Edison perfected a transmitter using anthracite coal granules that became the standard for telephones after
1881. It was small, simple and easy to use, and above all had a large output. The carbon transmitter was a
standby from this time until solid state electronics made it possible to put amplification in the telephone set,
allowing other kinds of transmitters to be used. It is still the only transmitter that can be used in practice
without electronic amplification. It has now been superseded by the electret condenser microphone, which
is superior in characteristics and very cheap. Still, it is disappointing that carbon microphones are not still
available for experimentation and non-critical use.

The Carbon Granule Microphone

A single-button carbon microphone as a telephone
transmitter is shown in the figure. The mouthpiece acts as
a horn to increase the acoustic pressure on the diaphragm.
The displacement of the diaphragm is transmitted directly
to the carbon button, which contains carbon granules
between two carbon discs. The front and rear contacts are
insulated and brought out to terminals. An external
battery drives current through the button, which has a
resistance of 30 to 10012. The resistance varies slightly
when the diaphragm is displaced, causing a change in the current and a consequent change in voltage,
which is the output of the microphone. The analysis in this section applies to any device in which the
resistance is made to vary by the displacement of a diaphragm, not just to the carbon microphone.

Suppose that the resistance of the button is r = R - ax + bx2 to a sufficient degree of approximation. The
constants a and b can be assumed positive, with b much less than a. The resulting current when a constant

voltage E is applied will be i = (E/R)(1 - ax + bx2)-I. This can be expanded in powers of x to get i = (E/R)[1

+ ax + (a - b)x2 + ...]. The quadratic term is usually negligible. If x varies sinusoidally, then the alternating
current variation is i = (Ea/R)x. This produces an alternating voltage of e = Eax, that can be considered as
the Th6/enin equivalent voltage source, in series with internal resistance R.

The overpressure p cos cot in the sound wave will produce a displacement x = (pA/s)cos cot in a stiffness-
controlled diaphragm of stiffness s and area A. Of course, this expression may be generalized as required,
but this approximation is good enough for the present purposes. This gives a generator voltage of amplitude
e = EapA/s. The constants a and s are usually not well-known, but this at least shows the effects of the most
important parameters. In particular, e is proportional to the DC voltage across or the current through the
button.

C disc-,
C granules

terminals

2-517—varnished muslin washer
-- Al diaphragm
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Carbon-Granule Transmitter

The sensitivity of the microphone is expressed as S = e/p = EaA/s or IaRA/s, normally in decibels: dB = 20
log S. Telephone transmitters with a current of roughly 25-50 mA have S about -15 dB or -20 dB, or 0.18 -
0.10 V/i.tbar. This can be raised by a factor of 10 using a transformer, which gives 1.0-1.8 V at an



impedance level of 5 kg a very creditable output. A transformer with a turns ratio of 1:10, or n = 10, raises
the voltage by a factor n, to ne, and the impedance by a factor n2, to n2R.

The power output into a load resistance R coupled through a

transformer of turns ratio n is P = re/(R + n2R')]2(n2W). If we let u =

n2R'/R, then differentiate P(u) with respect to u and set the result

equal to zero, we find that u = 1, or n2R' = R, the very familiar result
for maximum power. On the other hand, if we wish the maximum
voltage (as for the input to a high input impedance amplifier), then the

load resistance should be made as high as possible. If we use a transformer, then the DC current is not
affected by such arrangements, and can still be adjusted to any level required. Impedance matching is
illustrated in the diagram at the left.

Carbon transmitters of 1920 had sensitivity above -30 dB from about 600 Hz to 1900 Hz, strongly peaked
at 1000 Hz. This range contains most of the voice power, but gave the telephone sound a somewhat
unnatural quality. By 1934, the -30 dB bandwidth had been extended to 275-3100 Hz and was much less
peaked, giving about -15 dB sensitivity from 75-2500 Hz. Further improvements were rather less dramatic,
but the 1000 Hz peak was completely removed. This was a result of diaphragm and backing plate design,
not changes in the carbon button.

A double-button carbon microphone has a push-pull action that cancels second harmonics. A good
microphone with level response from 60 Hz to nearly 10 kHz, except for some wiggles of a few dB near
the upper limit, was created. The sensitivity, however, was only about -47 dB, much less than that of a
telephone receiver, in microphones optimized for good fidelity. By this time electronic amplification was
available, so low output was not a drawback. Such microphones were used in recording and broadcasting in
the early days, and gave very good service.

The outstanding disadvantage of the carbon microphone is noise, the so-called "carbon hiss," that could not
be eliminated, though it could be reduced by careful preparation of the granules. This noise is inherent in
the source of variable resistance, which was the surface properties of the carbon granules. Carbon by itself,
even in bulk, exhibits 1/f (pink) noise, and this was exacerbated in the granules. The noise can be
represented as a random voltage or current generator in series with the signal generator, in the usual way
for noise analysis. The carbon granules could be damaged, and even fused together, by unusually high
currents, such as those produced by inductive kicks. If the hermetic seal of the button was damaged,
moisture could cause the granules to pack. The resistance of the microphone would decrease in that case,
and it would become much less sensitive.

The Piezoelectric Microphone C r S Ct/C- C_ Nr 14.1 ct,L112

It was long known that certain crystals, notably tourmaline, would attract light objects when strongly
heated. This was thepyroelectric effect, the production of electrical polarization upon heating. While
studying this effect, the brothers Pierre Curie (1859-1906) and P.-J. Curie (1855-1941) discovered the
directpiezoelectric effect, or the production of electrical polarization when a crystal was strained, in 1880.
In 1881 they announced the converse effect, the production of strain when an electric field was applied to a
crystal. Much of the pyroelectricity previously observed was simply the piezoelectric effect due to strains
caused by thermal expansion, but there is also a primary pyroelectric effect.

The application of an electrostatic field to any substance may cause mechanical strains by the phenomenon
of electrostriction. These strains are proportional to the square of the applied field, and do not change if the
field direction is reversed. Piezoelectricity is quite distinct; piezoelectric strains are proportional to the
electric field, and reverse if the field is reversed. Piezoelectricity, where it exists, is usually much larger
than electrostriction.

The description of the piezoelectric effect is made complicated by the many directional quantities and the
crystal symmetries that enter. Strain is deformation per unit length, and has six components, three axial and
three shear. Stress, force per unit area, also has six components. Stress and strain are related by a
symmetrical matrix with, in general, 21 independent components. Electrical polarization, dipole moment



per unit volume, has three components, as does the electric field. Therefore, we have 18 quantities, all
depending on each other and on the orientation of the crystal. At least we can assume that the dependence
is linear, and described by a certain number of coefficients.

The symmetry important here is that of the point group of the crystal, those operations leaving one point
fixed. There are 32 possible point groups, each the basis of a crystal class, divided into six or seven crystal
systems. Crystals that do not have a centre of symmetry may exhibit piezoelectricity; those with a centre of
symmetry cannot, by Neumann's theorem, which states that any property of a crystal must have at least the
symmetry of the crystal. Such crystals are called hemihedral. Their axes are essentially one-sided, and
opposite directions on them are not equivalent. This is required if the piezoelectric strain is to be
proportional to the electric field, and reverse with it. Of the 32 crystal classes, 20 may be piezoelectric.
There are, in general 18 coefficients connecting the electric field to the strain in the direct effect, or the
polarization to the strain in the converse effect.

If X is a stress, in dyne/cm2, and x is a strain, dimensionless, then the relation between them is of the form
X = kx, where k has the dimensions of stress, and is called an elastic modulus. The inverse relation is x =

sX, where s = 1/k is called a compliance, with dimensions cm2/dyne. This is really a matrix relation, and
the matrix s is the inverse of the matrix k, not a simple reciprocal, though often the actual relations are
simple. Analogously, the direct piezoelectric effect can be expressed by P = ex, where x is strain, P the

polarization in esu/cm2, and e is a piezoelectric constant with the dimensions of polarization. The converse
effect can be expressed by x = dE, where x is the strain, E the electric field in statvolt/cm or erg/esu, and d
is a piezoelectric constant, with dimensions of inverse field. The polarization and the electric field are also
related by P = TIE, where ri is the electric susceptibility. Again, it must be emphasized that these are all
tensor relations generally involving many coefficients, and a constant spontaneous polarization Po may also
be involved. In that case, the P above is the change due to E.

When the Curies made their initial studies, which included discovering the piezoelectricity of quartz, which
has been very important, they found that Rochelle salt, or Sel de Seignette (a pharmacist in La Rochelle
who isolated and discovered the medical properties of the salt in 1672), had an extremely large
piezoelectric effect. Rochelle salt was used extensively in microphones, and is of considerable interest
besides, so the discussion here will focus on it. However, it is typical of all such materials. Rochelle salt is
sodium-potassium tartrate tetrahydrate, NaKC411406-4H20, which easily forms large orthorhombic
crystals. Above 55°C, it begins to form separate Na and K tartrates dissolve in the water of crystallization,
and disintegrates irreversibly. To preserve the crystal, it should not be heated above 45°C. Its large
piezoelectric effect occurs only between -18°C and +24°C, called the lower and upper Curie Points of the
substance. Between these temperatures, it is an electrostatic analogue of a ferromagnetic material, called a
ferroelectric, with a large spontaneous polarization. Like ferromagnetic materials, it is divided into
domains of constant spontaneous polarization, but the domains are quite large, even centimetres in size.
The domains are not obvious to the eye. Its crystals are enantiomorphic, like quartz, but only right-handed
crystals occur in most cases.

An X-cut crystal plate of Rochelle salt is shown at the right. The x,y,z
axes correspond to the crystallographic axes a, b,c. An X-cut plate
has the normal to its broad surface parallel to the x-axis. There are
only three piezoelectric coefficients for Rochelle salt, which relate
the three shear strains to the three components of the electric field.
The shear stress Yz is a force per unit area in the z-direction on a
surface whose normal is parallel tot the z-axis. For equilibrium, it
must be equal to zy . The opposite faces have the same forces acting,
but in the reverse direction. This shear stress gives rise to an electric
polarization in the direction shown, with d14 as the coefficient. The
other nonzero coefficients are d25 and d36, relating to zx and xy
shears, respectively. The three coefficients are different in value, but d14 is the largest. For Rochelle salt,

d14 is about 2.6 x 1e cm/statvolt, or 1/d = 3850 statvolt/cm (the electric field for unit strain). For a strain

of 10-4, an electric field of about 115.5 V/cm is required. The exact value of d depends on the temperature
and the circumstances of the crystal, but this gives an idea of its magnitude.
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A "450 X-cut rod" is an X-cut with the lateral sides making equal angles with the z and y axes. The shear

strain yz is 2AL/L, if L is the length of the rod, and AL is the change in length. The formula at the right in
the diagram for the converse effect serves to find the change in length for any applied field. Of course, the
strain and stress are related by the elastic constants of Rochelle salt, but we will not go into that here.

Ammonium dihydrogen phosphate or ADP, N114H2PO4, as well as the potassium salt potassium
dihydrogen phosphate or KDP, are also strongly piezoelectric, resembling Rochelle salt quite closely. The
Curie temperature of ADP is 147.9°C, it has no water of hydration, and is quite stable, so it makes more
durable devices. The symmetry is about the same, but a little higher, so that d14 = d25. Ceramics like barium
titanate, BaTiO3, which are ferrielectrics (two lattices oppositely polarized spontaneously; the observed
polarization is the difference), also are strongly piezoelectric. If a microphone is described as "crystal," it
usually contains ADP; if it is called "ceramic," barium titanate is the active element. Any piezoelectric
device is reversible; if a voltage is applied to a piezoelectric microphone, it will emit sound. It is also
strictly a passive electroacoustic transducer, and the output power cannot exceed the acoustic input power.

Rochelle salt first became more than a curiosity around 1917, when it was applied by Langevin to
ultrasonic acoustic transducers, or hydrophones, for the detection of submarines. Not only could strong
signals be created in water by the converse piezoelectric effect, but the same crystals could be used to
detect the reflected waves. This was, in fact, the origin of the important field of ultrasonics, which used
acoustic waves of greater frequency than 20 kHz, which were inaudible but very useful.

The impedance mismatch between air and a diaphragm is much greater than the mismatch between water
and a crystal hydrophone, so microphones are much more difficult to devise. The first microphones had a
45° X-cut bar, 1-2 cm long, 0.4-1 cm wide and 0.1 to 0.2 cm thick, cemented between a diaphragm and a
backing plate. A much more sensitive arrangement was a "bimorph" of two cemented X-cut plates with one
thin electrode between them. They could be arranged to bend or twist, and could be operated from a
diaphragm through mechanical leverage. A typical inexpensive modern ceramic microphone responds from
30 Hz to 15 kHz, with a sensitivity of -60 dB (1 iiV/i_tbar) and an advertised internal impedance of 81(0 at
an unspecified frequency (Kobitone LM037). The capacitance measures 786 pF, which gives a capacitive
reactance of 20.2 kü at 1 kHz. Piezoelectric microphones give low output at a moderate internal
impedance, and must always be used with amplification.

Piezoelectric transducers were used as analog phonograph pickups, giving a much higher output than
dynamic pickups. As driven elements, piezoelectric devices are used as telephone receivers, acoustic
transducers and record cutters. They are used for small loudspeakers, although dynamic loudspeakers give
much better results. In 1925, G. W. Pierce invented the acoustic interferometer, which uses an X-cut plate
and a parallel reflector to measure the speed of sound with great accuracy. He devised an oscillator that was
very sensitive to the reaction of the air on the crystal. W. G. Cady developed the quartz crystal resonator at
about the same time, which has had widespread application as a frequency-control device.

The Condenser Microphone b&Kcett,
The condenser, or capacitor, microphone was perfected by C. H. Wente in 1917 as a much-needed low-
noise substitute for the carbon microphone, and as a standard microphone for acoustical measurements. It
was then used in broadcasting for a few years, until replaced by the dynamic microphone, which is much
easier to use. The capacitor microphone is very simple in principle, and is still used for acoustical
measuring instruments. The recent development of the electret capacitor microphone (ECM) has overcome
all the inconveniences of the traditional capacitor microphone, and it is now used almost universally in
general applications, as in telephones and consumer electronics. An excellent, easy to use microphone can
be purchased for a dollar or two, and operated on 5 V at 0.5 mA. The ECM depends on two recent
developments, the polymer electret film, and the field-effect transistor. We shall discuss it after looking at
the traditional capacitor microphone.

A capacitor microphone consists of a metallized diaphragm that forms one plate of a capacitor, a backing
plate forming the other. The diaphragm is tightly stretched to have a high resonant frequency, and is placed
very close to the backing plate. Grooves are cut in the backing plate to control the mechanical impedance
of the diaphragm. The capacitance of a plane-parallel capacitor of plate area A and separation h is C =



47ticeA/h F, where A is in m2 and h is in m. The dielectric constant is lc, and s = 8.854 x 10-12 F/m, the MKS
constant that masquerades as a physical reality. Since the dielectric is air, we can take ic = 1. The charge on

a capacitor charged to a voltage V is Q = CV. If h varies, then dC = -(47mA/h2)dh = -(C/h)dh. This means
that the current will be i = -(CV/h)(dh/dt).

The microphone can be represented as a Norton equivalent circuit with a current generator i in parallel with
a capacitance C. This can be transformed to a Th6Tenin equivalent circuit of a generator e = i/jok = (V/h)x,
where x is the displacement of the diaphragm, in series with a capacitance C. If the diaphragm is stiffness-
controlled, then x = pA/s, so e = pVA/hs and the sensitivity S = e/p = VA/hs. The sensitivity is proportional
to the bias voltage V and the diaphragm area A, and inversely proportional to the separation h and the
stiffness s. The stiffness is raised if h is reduced, so they cannot be varied independently. Taking A = 10

cm2, h = 0.01 cm, and s = 1 x 108 dyne/cm, we find S = 10-5V V4tbar. If V = 200V, then S = 2 mV/pbar, or

-54 dB. This happens to be a relatively typical value for a capacitor microphone. The capacitance of the
microphone will be about 88.5 pF, which will give a capacitive reactance of 1.8 MS2 at 1 kHz, and 18 MQ
at 100 Hz. The microphone cannot be located far from the amplifier. Furthermore, the bias supply must be
extremely well regulated and ripple-free, since every variation will be combined with the acoustic signal.
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Magnets and Electrets

An electret is a body with a permanent polarization, analogous to a
magnet which has a permanent magnetization. Polarization P is
dipole moment per unit volume, and has the dimensions of surface
charge density. If P is uniform in the electret shown, a surface charge
+P appears on the left-hand face of the electret, and a charge -P on the
right. The electric dipole moment of the bar electret is p = PAL,
where A is the cross-sectional area of the electret, and L its length,
just as the magnetic dipole moment of the bar magnet is m = MAL.

An electric field exerts a torque on a dipole tending to align the dipole with the field, just as a magnetic
field acts on a magnetic dipole. The bar magnet and bar electret shown establish fields in space, and these
fields have energy. Some of this field (the "demagnetizing field") acts in the reverse direction to the
polarization or magnetization, tending to reduce it. A soft iron bar may be placed over the poles of a
magnet as a "keeper" through which most of the field will pass. Magnetic pole strength can be considered
to be induced at the ends of the keeper, which will neutralize some of the pole strength of the magnet,
reducing the demagnetizing field. Exactly the same thing occurs with an electret when it is placed between
the plates of a shorted capacitor. The surface charge due to the polarization is neutralized by the surface
charge of opposite sign induced on the capacitor plates. This happens naturally when an electret is exposed
to the air, as it collects charged particles floating as ions and dust. A magnet is not neutralized in the same
way, because there are no free magnetic charges.

Assume that we have a sheet electret of thickness d', rigid polarization P and
permittivity e. Let this sheet be placed in a parallel-plate capacitor so that
there is a space d between the upper plate and the upper surface of the
electret, and the permittivity of this air space is e. This capacitor is carefully
sealed away from floating charges so that the electret does not become
neutralized. When the plates are shorted to each other (a "short" in this case
can be a resistance of many megohoms) the voltage difference between them
becomes zero. The fields in the air space and in the electret must be opposite
in direction, and related by Ed = E'd so the total voltage is zero. A charge
density a will appear on the upper plate, and an opposite charge will appear on the lower plate. The net
charge at the bottom of the electret will be e - a, where e = P. An opposite charge will appear on the top of
the electret.
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Electret in a Capacitor

The field E is given by eE = a and the field E' by e'E' = e - a. Since E'd' = Ed, a = a'[d'/(d' + e'd/e)], and so
E = (P/e)[d'/(d' + e'd/e)]. As d becomes small, this approaches E = Ple. If the upper plate is the diaphragm
of a microphone, the electric field E plays the same role as the field produced by the bias voltage in an
ordinary capacitor microphone. Elimination of the bias voltage and all its inconveniences makes the
electret capacitor microphone a very desirable device.

Since the capacitance is small, even with the dielectric properties of the electret, the ECM still has a very
high internal impedance that is almost entirely capacitive. This drawback is eliminated by putting an FET



right at the diaphragm. The gate presents a very high impedance to the diaphragm capacitor plate, and the
FET is manufactured to have a small drain current for VGS = O. The output voltage is the voltage across an
external drain resistor in the range 21(12 to 50kü, which becomes the output impedance of the microphone.
The output voltage also increases proportionately to the drain resistance, of course.

An example of an ECM is the Kobitone LM045. This microphone is remarkably small, only 9 mm in
diameter and 6 mm tall. Diffraction effects will be negligible, so this omnidirectional microphone will
probe an acoustic field without perturbing it. Its bandwidth is 20 Hz to 12 kHz, and its sensitivity is
advertised at -64 dB (without specifying the load resistor, which is unfortunate), or 0.63 mV/µbar. The
power supply range is 2 to 10 V, and the current drawn is less than a milliampere. I found that a load
resistance of 22 kl2 and supply voltage +5 gave excellent results. Perhaps most remarkable is that is costs
only $2.29! The ECM is a worthy successor to the carbon microphone for general uses.

The Dynamic Microphone 1

The principle of the dynamic microphone was known in 1877 when Bell developed the telephone, but it
was impossible to use because of the lack of electronic amplification. In all dynamic transducers, a coil of
fine wire is free to move in a strong annular magnetic field. If the coil is moved by a diaphragm, a voltage
is induced in the coil. If a current flows through the coil, forces are exerted that cause the coil to move. The
equations governing these effects are F = BLi and e = BLv. B is the magnetic field in tesla (webers per
square metre), L the length in metre, v the speed in metre/s, i the current in A, and e the voltage in V. From
these equations, we find that F/i = e/v, or Fv = ei. Fv is the rate of doing mechanical work, and ei the rate of
doing electrical work. The signs are such that when mechanical work is done, an equal electrical work
appears, and vice versa. This shows very clearly that we are working with a reversible effect and that the
conservation of energy is observed. The word "dynamic" simply refers to the role of motion in the device;
it is not a very well-chosen term, but always refers to a moving-coil device.

In somewhat friendlier mixed units, we have F = BLi/10, where F is in dyne, B is in gauss, and i is in A.

Also, e = BLv x 10-8 in V, where B is in gauss, L is in cm, and v is in cm/s. The generated voltage in a

microphone is e = 10-8BLpA/Z', where p is the overpressure in µbar, A the area of the diaphragm in cm2,
and Z is the mechanical impedance of the diaphragm. It is clear from this that if the diaphragm is a simple
oscillator, the output cannot be independent of frequency, since the magnitude of Z' is least at resonance,
and increases rapidly for higher and lower frequencies. L is the total length of wire in the coil, L = ndN,
where d is the diameter of the coil and N the number of turns.
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Dynamic Microphone

Dynamic microphones became possible when it was realized that by making
the diaphragm oscillator include air volumes within the microphone, the
response could be flattened very nicely, at the expense of some sensitivity.
The structure of a typical dynamic microphone is shown in the figure. The
domed diaphragm acts like a rigid piston, and carries the coil of wire, which
moves in the annular gap of high magnetic field. The pole pieces of the
microphone are soft iron, with permanent magnets providing the field. The
mounting rim of the diaphragm contributes stiffness and a little resistance

(so, ro), while the diaphragm itself contributes mass (mo). It is acted upon by the acoustic overpressure, so
that the microphone is a pressure microphone, with omnidirectional characteristics. The air in the small
volume beneath the diaphragm acts as another stiffness element (si), while the kinetic energy of the air
moving in and out from under the diaphragm through the silk cloth contributes mass (mi), as well as a
larger resistance (ri). The result is two coupled oscillators, whose parameters can be varied to get the best
results. The electrical analogy was a help in designing dynamic microphones, since the results of different
arrangements could be studied easily without building actual microphones. The port V is to help low-
frequency response.

A typical dynamic microphone has a very low internal impedance, seldom as large as 102, and this
impedance is approximately resistive over the whole frequency bandwidth. On the other hand, the
sensitivity is quite low, no more than -90 dB or -100 dB, so amplification is essential. At least 40 dB can be
gained with transformers, bringing the output up to -50 dB when applied to the amplifier, which is not too
bad. Dynamic microphones are low-noise, require no bias voltages or other nuisances, and are relatively



rugged. They replaced capacitor microphones almost completely in broadcasting and recording. Most high-
quality microphones are still dynamic microphones, and are relatively expensive.

A dynamic microphone in reverse becomes a loudspeaker. Of course, the designs are quite different,
because they must be optimized for different things. A small loudspeaker makes a very passable
microphone, and can be used for this purpose, as in an intercom system. Such small loudspeakers radiate
poorly at low frequencies, so this is compensated by making them resonate at a few hundred Hz. This is
easily recognized in the oscilloscope traces when the output of a small loudspeaker is used as a
microphone, since it tends to ring at this frequency. A transformer of turns ratio 1:10 can be used to
increase the voltage output, and to make the internal impedance about 800ü for the usual 8ü speaker. The
same amplifier that drives the speaker from a line of this impedance can be turned around to drive the line
I ll LUIII WEIGH a UULUJII 13 VIG33GLI.

The Ribbon Microphone (/ a(IV /t4; C—

All the microphones so far described are operated by the acoustic overpressure acting on one side of a
diaphragm, and so may be calledpressure microphones. Because pressure is a scalar quantity, these
microphones are omnidirectional, except for diffraction effects that depend on frequency. To realize a
directional microphone, it is necessary to operate the microphone by some vector quantity. One vector
quantity in an acoustic wave is thepressure gradient, which is parallel to the direction of propagation and
in phase with the displacement. A microphone operated by the pressure gradient is called apressure-
gradient microphone. Since velocity is also a vector quantity, such microphones are also called velocity
microphones, but they are not directly operated by particle velocity.

I f aplax is the pressure gradient, the force in a direction making an angle 0 with the propagation direction,
acting on a surface of cross-sectional area A and length L is f = -(öp/ax)AL cos 0. For a harmonic travelling
wave, f = jkpAL cos 0. This is the desired angle-dependent force. It is in quadrature to the pressure, and
proportional to k = cco. If co is much larger than the resonant frequency of the surface, then the mechanical
impedance is jcom, where m is the mass of the surface. The velocity of the surface is the ratio of the force to
the mechanical impedance, or v = (pAL/mc) cos 0, where c is the speed of sound. This means that v is
proportional to p independently of frequency.

This equation holds when kL < 1, that is, when the size of the microphone is small compared to a
wavelength. At high frequencies this is not necessarily true, and the force is smaller, dropping to zero when
f = c/L. Instead of kl cos 0, we have 2 sin[(k1 cos 0)/2] in the expression for the force on the surface. This
falloff is compensated by an increase in pressure difference due to diffraction.

I have spoken of a "surface" to avoid using the word "diaphragm," which gives the wrong idea when used
of a pressure-gradient microphone. The most important pressure-gradient microphone is the ribbon
microphone. The surface in this case is a corrugated aluminium ribbon supported in a strong magnetic field.
The emf generated when the ribbon moves is proportional to v, and so to the overpressure p. That this
ribbon acts like a thick surface is harder to realize. The ribbon is exposed to pressure equally on front and
back, and the distance L is determined by the size of the baffle in which the ribbon is suspended. L turns
out to be roughly equal to the radius of a circular baffle. (not 2L, as might be expected).

The ribbon acts like a coil of only one turn, so the generated emf is very small.
On the other hand, not only is the internal impedance very small (less than an
ohm), but the velocity can be made higher by reducing the mass m to a minimum
value. The sensitivity of a ribbon microphone may be -90 dB or -105 dB, but
more than 40 dB can be gained at once with a transformer, so its output of -50 dB
is comparable to that of a dynamic microphone. There is usually a transformer at
the microphone to match it to a transmission line, and another transformer at the
amplifier input.
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Ribbon Microphone

Most significantly, we now have a sensitivity that is proportional to cos 0. The ribbon microphone is
equally sensitive to sound coming from front and back (so two people can face one another across it and
both be equally heard), and is completely insensitive to sound coming from 900 or 270°. This pattern is not

dependent on frequency, as are diffraction effects. The ribbon microphone discriminates by a factor of 3



against isotropic noise. It can also be turned so that noise sources can be put in a zone of low sensitivity.
These features made the ribbon microphone the standard for broadcasting, and the lozenge-shaped shiny
microphone a familiar sight.
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The cosine sensitivity of the ribbon
microphone can be combined with the
isotropic sensitivity of a pressure
microphone to make a microphone with
a response proportional to (1 + cos 0).
This curve is a cardioid. Cardioid
microphones favor sound coming from
00, and discriminate against sounds

coming from 180°. A cardioid
microphone at the front of a stage will
pick up sounds originating onstage, and
reject those coming from the direction of
the audience. Polar plots of the
amplitude sensitivity of the ribbon and
cardioid microphones are shown at the

The amplitude response of a pressure gradient microphone changes sign for a reversal of the direction of
the wave, while that of a pressure microphone does not. This has a strange effect in a standing wave, where
waves are moving in opposite directions. At a point where the pressure microphone gives a maximum
signal, the pressure-gradient microphone gives a minimum signal, and vice-versa.

The Hot-Wire Microphone 7
The hot-wire microphone is not like the other microphones we have studied. It does not reproduce sound
pressure variations electrically, but is more of a detector of sound and an indicator of its energy. Since the
name does crop up from time to time, well describe it here for completeness. It is specifically used for low
frequencies and for infrasonic signals. It was developed during the 1914-1918 war as a sound ranging
device, for acoustic location of artillery to aid counterbattery fire. After the war, Tucker and Paris perfected
the hot-wire microphone for infrasonic detection, publishing their results in 1921.

An example of a hot-wire microphone is shown at the right. It consists of a very
fine platinum wire placed over the neck of a Helmholtz resonator and heated by
a current passed through it. The wire is supported by a thin glass rod and a disc
of mica. The disc is clamped between silver rings that make the contacts. When
a sound wave of the resonant frequency arrives, air rushes in and out of the neck
of the resonator at that frequency. This air flow cools the wire by forced
convection, so its resistance decreases. The resistance decrease is easily
detected by a Wheatstone bridge. The hot wire of a typical device is 6 gm in
diameter, with a resistance of 350n and requiring about 30 mA to heat.

A Helmholtz resonator consists of a volume V and a neck of length L and cross-
sectional area A. Its resonant frequency is given by the formula in the diagram,
where c is the speed of sound. A 125-ml Florence flask makes a good Helmholtz resonator. I measured L

5.5 cm and A = 1.54 cm2, which gave f= 256 Hz (the physicist's middle C). The actual resonance was an
A, or 220 Hz, on the musician's scale, not far off Without the resonator, the sensitivity of the hot-wire
microphone is very low, so practical devices are all resonant. The microphone can be applied to frequencies
as high as 512 Hz.

In addition to the DC change in resistance, it is also possible to detect AC variations in the hot-wire
resistance. These variations are at twice the sound frequency, since the air blows alternately in and out, and
the cooling does not depend on the direction of the air velocity. The hot-wire microphone is, accordingly,



not applicable to speech or  music. As its use in acoustic ranging indicates, it has a rather quick response. It
is useful in a frequency range where other  microphones are unresponsive.

Microphone Specifications

The most fundamental microphone specifications should allow you to estimate how much electr ical output
you will get for  a cer tain acoustical input. All microphones, except for  carbon microphones, require
electronic amplification, and you should be able to select a suitable amplifier . The microphone can be
represented by a Thévenin equivalent circuit with a generator  in ser ies with an internal impedance. At a
minimum, the microphone specifications should supply these two parameters.

The generator  voltage is typically specified in dB re 1 V per  µbar , or  e = 20 log p, where p is the acoustic
overpressure in dyne/cm2 or  µbar . Sometimes the pascal is used as the reference pressure, 1 Pa = 10 p.bar .
This adds 10 dB, so manufacturers like to use it to imply that their  microphones are more sensitive. The
sensitivity is specified at some reference frequency, usually 1000 Hz. A curve of dB vs. fr equency, giving
the frequency response of the microphone, may be available. A bandwidth of 50 Hz to 5000 Hz between -3
dB points is not bad, but most microphones exceed this, and 30 Hz to 10,000 Hz is often found.

The calibration curve of microphone sensitivity in dB vs. frequency must be measured exper imentally.
This is usually done in one of two ways. If a constant overpressure is applied at each frequency, a constant-
pressure calibration results. If the microphone is placed a reasonable distance from the microphone in an
anechoic chamber , so that it is activated by what is essentially a plane wave, the result is a free-field curve.
The free-field curve will be more representative of the response of the microphone in actual use, since it
includes the effects of diffraction and other  influences that change the relation between the acoustic
pressure in a wave and the pressure on the diaphragm. On the other  hand, the pressure calibr ation r eflects
the fundamental proper ties of the microphone, and is useful in designing measur ing instruments.

Equally impor tant is the specification of the internal impedance of the microphone, which var ies over  an
extremely wide range for  different microphone types, from less than 1S2 for  a r ibbon microphone to many
megohms for  a capacitor  microphone. This is more difficult to find, and sometimes you must assume a
typical value for  the microphone type involved. A microphone with a low internal impedance, say 50ü or
less, is normally used with a step-up transformer  that provides 40 dB of gain effor tlessly (with a 1:100
transformer) and matches well to the high input impedance of many amplifiers. A microphone with a high
capacitive internal impedance cannot be used with a cable of any length, so the amplifier  must be very near .
In the modern electret condenser  microphone, the amplifier  is an FET in the microphone car tr idge itself.

Sometimes microphones are specified in terms of output power  for  a given acoustical input, often as dB re
1 mW per  pascal. Transformers do not change the power , of course, so they do not affect this specification.
With this figure, it is easy to estimate how much amplifier  gain will be necessary to br ing the electr ical
signal to the desired level. 0 dB is, as usual, re 1 mW. This is not as useful a specification as that of
sensitivity and internal impedance, from which it can easily be der ived.

The directionality of a microphone is often of interest in applications. A pressure microphone is
fundamentally omnidirectional at lower  frequencies (wavelength larger  than the physical size of the
microphone). A r ibbon microphone has maximum sensitivity from front and back, and is insensitive to
sound coming from the sides. Its sensitivity has front and back lobes of approximately equal size of r  = a
cos 0 shape. A cardioid microphone has the very desirable character istic of a large forward-back
asymmetry in its sensitivity. Placed at the front of a stage, it can pick up sound coming from the stage, and
reject that coming from the audience. The directional sensitivity can be expressed in a polar  plot. The
directionality can be expressed in dB by subtracting the average sensitivity over  all directions from the
maximum sensitivity. For  a r ibbon microphone, this is 4.8 dB.
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